Ternions

The real numbers are the dependable breadwinner of the family, the complete ordered field we all rely on. The complex numbers are a slightly flashier but still respectable younger brother: not ordered, but algebraically complete. The quaternions, being noncommutative, are the eccentric cousin who is shunned at important family gatherings. But the octonions are the crazy old uncle nobody lets out of the attic: they are nonassociative.

    —John Baez

Glossary

Triplex

A Cartesian three-element vector ( x, y, z ) where x, y, z are real

Ternions
The number system described here, allowing addition, multiplication and division of triplex numbers

Abstract

Multiplication of three-dimensional Cartesian vectors is defined in terms of rotation in three-space using quaternion conjugation. This defines a reasonably well-behaved arithmetic that can be used to generate three-dimensional graphics. Ternion arithmetic satisfies all the field axioms except multiplicative commutativity, multiplicative associativity and the distributive law on the left.
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Background

The problem is how to perform arithmetic in three dimensions. Whereas the complex numbers do an excellent job for two dimensions, there is no field of dimension three that could do the same for our three-dimensional world. In other words, there is no completely satisfactory way to add, multiply and divide triplex numbers, ie Cartesian co-ordinates in three-space. In order to make three-dimensional fractals in the same way as escape time fractals in two dimensions (such as the famous Mandelbrot Set) we need to be able to at least perform addition and exponentiation of triplex numbers.

So far, the most successful solution to this problem is that of White and Nylander. The basis of their idea for triplex multiplication is an analogy with complex multiplication. Multiplying a complex number by another complex number is equivalent to stretching the first number by the modulus of the second, and rotating it by the angle of the second number. To see this, consider two complex numbers in polar form, rei( and sei(. Their product is rsei(( + (), so the resulting number has modulus equal to the product of the moduli of the two original numbers, and its angle is the sum of their angles.

In the White-Nylander system a triplex number is converted to a modulus plus two angles. Multiplication of triplex numbers is performed by taking the product of the moduli and the sums of the two angles. Using this mathematics it is possible to render three-dimensional fractals called mandelbulbs by means of ray tracing. Mandelbulbs have been around since 2010. However, the graphics produced are not quite on par with two-dimensional fractals, with some smearing of detail, as well as artefacts. In addition, the quadratic equation produces an unfractal image. This has stimulated a desire to find another way.

Rationale for a new approach

In 1892 Lord Kelvin wrote, “Quaternions came from Hamilton after his really good work had been done; and, though beautifully ingenious, have been an unmixed evil to those who have touched them in any way, including Clerk Maxwell.“

Posterity has not endorsed Kelvin’s slander of the quaternions. Apart from being one of only two well-behaved finite-dimensional algebras that extend the real numbers, quaternions are useful in both pure and applied mathematics. They are used for calculations involving three-dimensional rotations, such as in three-dimensional computer graphics, navigation, molecular dynamics, flight dynamics, and orbital mechanics of satellites.

Hamilton came upon the quaternions while attempting to find a way to multiply and divide triplex numbers. This paper uses quaternions to define a relatively well-behaved arithmetic for triplex numbers, which can be used to produce three-dimensional graphics. This triplex system, called ternions, may also be useful in other contexts requiring multiplication and division of spatial co-ordinates.

If the triplex co-ordinate is seen as lying on a sphere then the modulus is the radius of the sphere and two angles are needed to specify its angular position. Triplex multiplication can be seen as stretching the first number by the modulus of the second and using the second number to rotate the first by its two angles, which can be combined into a single rotation. The problem with this approach is that rotations in three-space do not commute. To see this, try rotating something by 90 degrees around the x-axis then by 90 degrees around the y-axis, and then in the reverse order. In fact, three-dimensional rotations are correctly handled by the quaternions, a non-commutative division algebra. 

The conclusion is that multiplication defined in this way is not likely to be commutative. Perhaps this does not matter for equations of the form xpn+1 = xpn + c, so long as we always multiply in the same way. However, the resulting system cannot be a field. In any case, the Frobenius theorem rules out the existence of a usable field of dimension 3. 

See https://en.wikipedia.org/wiki/Frobenius_theorem_%28real_division_algebras%29
The Frobenius theorem states that up to isomorphism there are exactly three finite-dimensional associative division algebras over the reals: the reals, the complex numbers and the quaternions. So a triplex system defined using rotations can be expected to fail commutativity and at least one of the other axioms. Thus it is probably an inmate of a mathematical attic, as Baez suggests.

Continuing with the rotation analogy for triplex multiplication, it seems best to use the quaternions, as there is nothing better once we go beyond two dimensions. The quaternions are almost a field, obeying 10 of the 11 axioms, missing out only on commutativity of multiplication. 

It is well-known that if r and v are quaternions then the product rvr-1 has a zero real term. This means that quaternion multiplication can be used as a stepping-stone to triplex multiplication, since a quaternion with a zero real term is nothing but a triplex number. The current paper is based on this idea.

Section 1.1 We define ternion multiplication.

We part company with the White-Nylander approach, as we use vector rotation, rather than addition of angles in polar form. Any rotation or sequence of rotations around the origin in three dimensions can be represented as a combination of a single vector u→ and a scalar angle θ, ie an axis in three-space through the origin and how much to turn around it. Quaternions give a simple way to encode this axis-angle representation in four numbers, and to apply the corresponding rotation to a position vector representing a point relative to the origin in R3. The quaternion that rotates around the vector 

( x, y, z )  by 2( is ( cos(, xsin(, ysin(, zsin( ), where x2 + y2 + z2 = 1. 

See https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
We choose the angle of rotation for the definition of ternion multiplication so that rotating the unit x-vector around the appropriate axis will make it equal the right vector multiplier. This will make ( 1, 0, 0 )( x, y, z ) = ( x, y, z ). Hopefully, we will also get ( x, y, z )( 1, 0, 0 ) = ( x, y, z ). Reciprocals should also work without any fudging.

We need only one angle of rotation, that between ( 1, 0, 0 ) and ( x, y, z ). The other thing we need is to use the plane defined by these two vectors to calculate an axis of rotation at right-angles to the plane. We need to: 1) work out the angle between two vectors and 2) find one of the two vectors that are at right angles to both ( 1, 0, 0 ) and ( x, y, z ). The dot product and cross product conveniently provide these two bits. All vectors pass through the origin.

The angle between the two vectorsis given by arccos( ( 1, 0, 0 ) . ( x, y, z )/sqrt( x2 + y2 + z2 ) ) where the dot is the “dot product”. So the angle is arccos( x/sqrt( x2 + y2 + z2 ) ) and lies in the range 0 to 180 degrees.

The vector r, at right angles to both ( 1, 0, 0 ) and ( x, y, z ) is given by the cross product (labelled "x") of the two vectors, ie if u = ( u1, u2, u3 ) and v = ( v1, v2, v3 ) then r = (u x v) = ( u2v3  u3v2, u3v1  u1v3, u1v2  u2v1 ). So we get r = ( 0, z, y ). The upshot is that we need to rotate ( 1, 0, 0 ) by arccos( x/sqrt( x2 + y2 + z2 ) ) around ( 0, z, y ). We normalise r to be 

( 0, z/sqrt( z2 + y2 ), y/sqrt( z2 + y2 ) ). If y = z = 0 then we cannot normalise the vector r, because r is ( 0, 0, 0 ), ie it is not possible to rotate around r. In this case we are multiplying ( 1, 0, 0 ) by ( x, 0, 0 ), which we can simply set to equal 

( x, 0, 0 ). If y and z are not both zero then we use the quaternion rotation formula, so that our definition of the product, 

vq = ( a, b, c)( x, y, z ) becomes:

vq = |q|rv0r-1                                                                                                                                                                           (1)

where |q| = sqrt( x2 + y2 + z2 )

           r = ( cosszsin, sysin) 

= arccos( x/|q| )/2

           s = 1/sqrt( y2 + z2 ) (provided y or z is non-zero)

           v0 = ( 0, a, b, c ) 

           r-1 = ( cosszsin, sysin )

NB1 This product of three quaternions will have a zero real term. Its last three terms will be the triplex vector.

NB2 If y = z = 0 then the vector q is collinear with ( 1, 0, 0 ) and formula (1) becomes vq = xv, ie the vector q acts as a scalar multiplier. See Section 1.9.

NB3 The term |q| is the norm of the vector q.

The left vector is rotated by the right vector in the way that would be needed to rotate the unit vector to be collinear with the right vector. The left vector is also stretched by the modulus of the right vector. This definition of ternion multiplication is asymmetrical, as nearly all the terms come from the right vector. It is as though the right vector modifies the left one, but not vice versa.

Appendix 1 shows that equation (1) can be simplified to eliminate quaternions and trig terms. The resulting equivalent formulation is 

vqaxby  czaybq|ys2by + cz )xqazcq|zs2by + cz )xq

It can be made neater by setting w = a + s2by + cz )xqto give

vqaxby  czbq|ywcq|zwa

though this is still not snappy enough to carve on Brougham Bridge, in the manner of Mr Hamilton.

This should be computationally less expensive than equation (1) and should produce smaller rounding errors. 
Section 1.2 We derive the formula for ternion exponentiation. 

Let q = ( x, y, z ) and ( be a real number, then q( = qq(-1. Multiplying q by q(-1 is equivalent to rotating it ((-1) times through which is the same as rotating q once through ((-1). Hence we can write:

q( = |q|(-1( cosszsin, sysin)( 0, x, y, z )( cosszsin, sysin )                                                        (4)

where |q| = sqrt( x2 + y2 + z2 )

= ( ( – 1 )arccos( x/|q| )/2

           s = 1/sqrt( y2 + z2 ) (provided y or z is non-zero)

             If y = z = 0 then q( = ( x(, 0, 0 ).

Note that the modulus of each of the two quaternions ( cosszsin, sysin) and ( cosszsin, sysin ) is 1.

We can simplify the formula for the exponential using a short-cut. Equation (A) in Appendix 1 is 

|q|( cosszsin, sysin)( 0, a, b, c )( cosszsin, sysin )

q|acos2ssin2by + cz )basysin2s2sin2cyzy2b )caszsin2s2sin2cz2byz )

Since the working out of (A) made no assumptions about , we can write

q( q|(-1acos2ssin2by + cz )basysin2s2sin2cyzy2b )caszsin2s2sin2cz2byz )

Please note that we write cos2 to mean cos( 2for ease of legibility. Since a = x, b = y, c = z, we get

q( q|(-1xcos2ssin2y2 + z2 )yxsysin2s2sin2yz2y3 )zxszsin2s2sin2z3y2z )
q|(-1xcos2sin2syxyssin2ysin2zxzssin2zsin2

q|(-1xcos2sin2sy( 1xssin2sin2z( 1xssin2sin2

Using sin21  cos2

1 + xssin2sin21 + xssin2cos2xssin2 + cos2

q( q|(-1xcos2sin2sy( xssin2 + cos2z( xssin2 + cos2

dividing by |q|:
q( = |q|(( cos2x/|q| ) sin2( |q|s ), ys( sin2x/|q| )+ cos2( |q|s ) ), zs( sin2x/|q| )+ cos2( |q|s ) ) )

Let ( = arccos( x/|q| ) so that cos( = x/|q| 

since y and z cannot both be zero we can use the defining triangle to get sin( = sqrt( y2 + z2 )/|q| = 1/( |q|s ), giving

q( = |q|(( cos2cos( sin2sin(, ys( sin2cos(+ cos2sin( ), zs( sin2cos(+ cos2sin( ) )

using cos( A + B ) = cosAcosB  sinAsinB

and sin( A + B ) = sinAcosB + cosAsinB 

q( = |q|(( cos( 2(, ys( sin( 2(, zs( sin( 2() )

Let ( = (( ( – 1 )arccos( x/|q| ) + arccos( x/|q| ) = (arccos( x/|q| )
The simplified formula for real powers of a ternion q = ( x, y, z ) is then

q( = |q|(( cos(, yssin(, zssin( )                                                                                                                             (4a)

where |q| = sqrt( x2 + y2 + z2 )

( = (arccos( x/|q| )

           s = 1/sqrt( y2 + z2 ) (provided y or z is non-zero)

If y = z = 0 then q( = ( x(, 0, 0 ).

Setting ( = 1 we obtain the polar form of a ternion 

q = |q|( cos(, yssin(, zssin( )

where ( = arccos( x/|q| ).

1.2.1 The quadratic

Equation (2) gives a simple formula for the ternion quadratic expression. If q = v, ie a = x, b = y, c = z then

q2 = x2 y2  z2xy + yqys2y2 + z2 )xqxzzq|zs2y2 + z2 )xq

q2 = x2 y2  z2xy + yqyxqxzzq|zxq

q2 = x2 y2  z2xyxz

The quadratic formulas for complex, ternion and quaternion numbers are:

( x, y )2         = ( x2y2,                 2xy )
( x, y, z )2     = ( x2y2 z2,         2xy, 2xz)
( x, y, z, w )2 = ( x2y2 z2  w2, 2xy, 2xz, 2xw)

1.2.2 The cubic

We substitute ( x, y, z )2 = ( x2y2 z2, 2xy, 2xz) into equation (2).
( x, y, z )3 = ( x2y2 z2, 2xy, 2xz)( x, y, z )

                 = ( x( x2y2 z2  ) – 2xyy – 2xzz, 

                     y( x2y2 z2  ) + 2xy|q| + ys2xyy + 2xzz )( xq

z( x2y2 z2  ) + 2xz|q| + zs2xyy + 2xzz )( xq

                 = ( x3xy2 xz2 – 2xy2 – 2xz2, 

                     yx2y3  yz2 + 2xy|q| + ys2xy2 + 2xz2 )( xq

zx2zy2 z3 + 2xz|q| + zs2xy2 + 2xz2 )( xq

                 = ( x3xy2 xz2,  

                      yx2y3 yz2 + 2xy|q| + ys2(2x)( y2 + z2 )( xq

                      zx2zy2 z3 + 2xz|q| + zs2(2x)( y2 + z2 )( xq

                 = ( x3xy2 xz2, yx2y3 yz2 + 2xy|q| + 2xy( xqzx2zy2 z3 + 2xz|q| + 2xz( xq

                 = ( x3xy2 xz2, yx2y3 yz2 + 2x2yzx2zy2 z3 + 2x2z

                 = ( x( x2y2 z2 ), y( 3x2y2 z2 z( 3x2y2 z2

The cubic formulas for complex, ternion and quaternion numbers are:

( x, y )3         = ( x( x2 y2 ),                          y( 3x2y2 ) )

( x, y, z )3      = ( x( x2y2 z2 ),           y( 3x2y2 z2 z( 3x2y2 z2

( x, y, z, w )3 = ( x( x2 3y2  3z2  3w2 ), y( 3x2y2 z2  w2 ), z( 3x2y2 z2  w2 ), w( 3x2y2 z2  w2 ) )

1.2.3 The quartic
We use equation (4a) directly:

q4 = |q|4( cos(, yssin(, zssin( )                                                                                       

where( = 4arccos( x/|q| )

Note that cos2cos2sin2and sin2sincosso that
sin4sin2cos2sincoscos2sin2sincossin2sincossin3cos
cos4cos2sin2cos2sin22sin2cos2cos4sin4sin2cos2sin2cos2

cos4sin4sin2cos2

setting ( = 4and using the sin4and cos4 formulas:

q4 = |q|4( cos4sin4sin2cos2, ys( sincossin3cos, zs( sincossin3cos )                                                                                       

since  arccos( x/|q| ) we have cosx/|q| and sin|q|s

q4 = |q|4( x4/|q|4|q|4s4|q|2s2x2/|q|2, ys( |q|sx/|q||q|3s3x/|q|, 

                                                                          zs( |q|sx/|q||q|3s3x/|q| )                                                                                         

q4 = ( x4s4x2s2, ys( x|q|2sxs3, zs( x|q|2sxs3
    = ( x4 y2 +z2 2x2s2, yx( |q|2s2, zx( |q|2s2
    = ( x4y4 + 2y2z2 +z4 x2( y2 +z2 , 4yx( x2 + y2 +z2( y2 +z2 , 4zx( x2 + y2 +z2( y2 +z2 
    = ( x4y4 +z4 + 2y2z2 x2y2 x2z2, 4xy( x2  y2 z2 , 4xz( x2  y2 z2  
=x4 + ( y2 + z2 ( y2 + z2  6x2 )4xyx2 y2 z24xzx2y2 z2

The quartic formulas for complex, ternion and quaternion numbers are:

( x, y )4             = ( x4 y4 6x2y2,                                 4xyx2 y2 )
( x, y, z )4       = x4y4  6x2y2 z4   6x2z2 y2z24xyx2 y2 z24xzx2y2 z2
( x, y, z, w )4 = ( x4y4  6x2y2 +z4  6x2z2 +y2z2  6x2w2 + 2y2w2 + 2z2w2 + w4, 

                                                                               4xy( x2 y2  z2  w2 ), 4xz( x2 y2  z2  w2 ), 4xw( x2 y2  z2  w2 ) )
If this were evolutionary biology rather than algebra, then one might claim the ternions as the “missing link” between the complex numbers and the quaternions. See 1.2.4 below.

1.2.4 We prove that ternion exponentiation is reducible to quaternion exponentiation.
Setting w = 0 makes the quadratic, cubic and quartic formulas the same for quaternions as for ternions. In fact, ternion exponentiation is equivalent to quaternion exponentiation with w = 0 for all real exponents. Thus the ternions are a close three-dimensional analogue of the quaternions. Given that ternion exponentiation is equivalent to quaternion exponentiation with w = 0, does that make the ternions redundant? It doesn’t, because unlike with exponentiation, quaternion multiplication cannot be used to directly define multiplication of triplex numbers. This is because in general the quaternion product ( x1, y1, z1, 0 )( x2, y2, z2, 0 ) gives a non-zero term in all four positions.

Although the quaternions can be used instead of ternions for polynomial formulas, ternions are needed for more complicated formulas, including quotients of polynomials and functions such as z2sinz/logz. Of course, one needs to define sin and log for ternions using a series expansion.

Proof

According to https://en.wikipedia.org/wiki/Quaternion the power of a quaternion raised to an arbitrary real exponent ( is given by:

q( = |q|(( cos((() + (sin((() )

where q = ( x, y, z, w ) = x + v, and the angle ( and the unit vector ( are defined by:

x = |q|cos(and v = (|q|sin(, 

so ( = arccos( x/|q| ) and

( = 1/( |q|sin( )( 0, y, z, w ) provided sin((
If sin(then v = 0 and q = x. This is the trivial case where the quaternion q is a real number, in which case its exponential is the same in the ternion and quaternion systems. So if q is not just a real number the general quaternion exponential formula is:

q( = |q|(( cos( (( ), ysin( (( )/( |q|sin( ), zsin( (( )/( |q|sin( ), wsin((( )/( |q|sin( ) )

We prove that this general formula for quaternions reduces to the ternion formula when w = 0. Setting w = 0 the quaternion power formula becomes

q( = |q|(( cos(, ysin(/( |q|sin( ), zsin(/( |q|sin( ), 0 )

where(= (( and ( = arccos( x/|q| ) as before.
Since y and z cannot both be zero we can use the defining triangle of (to get 

sin( = sqrt( y2 + z2 )/|q| = 1/( |q|s ), so |q|sin( = 1/s and hence

q( = |q|(( cos(, yssin(, zssin(, 0 )

where |q| = sqrt( x2 + y2 + z2 )

( = (arccos( x/|q| )

           s = 1/sqrt( y2 + z2 ) (provided y or z is non-zero)

The above quaternion formula is identical to the ternion formula (4a):

q( = |q|(( cos(, yssin(, zssin( )                                                                                         

where ( = (arccos( x/|q| )

Section 1.3 We check that ( 1, 0, 0 ) acts as an identity on the right as well as on the left.

Substituting a = 1, b = c = 0 in (2) we obtain

( 1, 0, 0 )xyzxyz

If x = 1, y = z = 0 then (2) gives

a,bc( 1, 0, 0 )abq|cq|a,bc

Section 1.4 We check that given any vector q ( ( 0, 0, 0 ) we can generate q-1 such that qq-1 = q-1q = ( 1, 0 , 0 ). 

1.4.1 We work out q-1
We simply reverse the sign of in the formula for r and invert the modulus, giving:

q-1 = ( 1, 0, 0 )q-1 = rv0r-1/|q|                                                                                                                                            

where |q| = sqrt( x2 + y2 + z2 )

           r = ( cosszsin, sysin) 

= arccos( x/|q| )/2

           s = 1/sqrt( y2 + z2 ) (provided y or z is non-zero)

           v0 = ( 0, 1, 0, 0 ) 

           r-1 = ( cosszsin, sysin )

    = |q|-1( cosszsin, sysin)( 0, 1, 0, 0 )( cosszsin, sysin )

    = |q|-1( cosszsin, sysin)( 0, cos, sysin, szsin ) 

    = |q|-1( szsinsysinsysinszsin, cos2szsinszsin s2y2sin2 

                cossysin sysincos, cosszsin  szsincos)

    = |q|-1( 0, cos2s2sin2z2 + y2 ), 2sysincosszsincos
    = |q|-1( 0, cos2s2sin2z2 + y2 ), sysin2szsin2
    = |q|-1( 0, cos2sin2, sysin2szsin2
    = |q|-1( 0, cos2, sysin2szsin2

using sysin2 = y/|q| and szsin2 = z/|q| we get

    = |q|-1( 0, cos2, y/|q|z/|q|

and cos2 = x/|q| so

     = |q|-1( 0, x/|q|, y/|q|z/|q|

= |q|-2( 0, x, yz

which gives the vector equation for the reciprocal:

q-1 = |q|-2( x, yz(5)

The formulas for the reciprocals of complex, ternion and quaternion numbers are:

( x, y ) -1         = |q|-2( x, y )
( x, y, z ) -1     = |q|-2( x, yz
( x, y, z, w ) -1 = |q|-2( x, yz, w

again showing an orderly evolution. Note that we could have gotten the ternion formula directly using the result of 1.2.4.

1.4.2 We check that this acts as the reciprocal of q on the right.

qq-1 = ( x, y, z )|q|-2( x, yz|q|-2( x, y, z )( x, yz

substituting in equation (2) 

vqaxby  czaybq|ys2by + cz )xqazcq|zs2by + cz )xq

we obtain
qq-1|q|-2axby  czaybq|ys2by + cz )xqazcq|zs2by + cz )xq

qq-1 = |q|-2( x2 + y2 + z2, xy + y|q|  ys2 y2  z2 xqxz + z|q|  zs2 y2  z2 xq

        = |q|-2( x2 + y2 + z2, xy + y|q| + yxqxz + z|q| + zxq

        = ( 1, 0, 0 ) as required.

1.4.3 We check that |q|-2( x, yz acts as the reciprocal of q on the left.

q-1q = |q|-2( x, yz( x, yz
substituting in (2) we obtain
q-1q = |q|-2( x2 + y2 + z2, xy  y|q| + ys2 y2  z2 xqxz  z|q| + zs2 y2  z2 xq
        = |q|-2( x2 + y2 + z2, xy  y|q|  yxqxz  z|q|  zxq
        = ( 1, 0, 0 ) as required.

So the vector |q|-2( x, yzbehaves correctly as the reciprocal of ( x, y, z ) on both the left and the right. All non-zero vectors have reciprocals. If y = z = 0 but x is non-zero, then the reciprocal of ( x, 0, 0 ) is simply ( 1/x, 0, 0 ).

Section 1.5 We check commutativity of multiplication.

A counter example shows that the ternions are not commutative. We use equation 2a: 

( a, b, c)( x, y, z )

            axby  czbq|ywcq|zw

where w = a + sby + cz )xq

                        |q| = sqrt( x2 + y2 + z2 )

                        s = 1/( y2 + z2 ) (provided y or z is non-zero)

Let a = ( 0, 1, 0 ) b = ( 0, 0, 1 ) then

ab = ( 0, 1, 0 )( 0, 0, 1 ) = ( 0, 1, w ) where w =  0, so ab = ( 0,1, 0 ) = a

ba = ( 0, 0, 1 )( 0, 1, 0 ) = ( 0, w, 1 ) where w =  0, so ba = ( 0, 0, 1 ) = b

As expected, ternion multiplication is not commutative. 

Section 1.6 We show that the ternions do not obey the associative law for multiplication.

A counter example shows that the ternions are not associative. 

Let e = ( 1, 0, 0 ) a = ( 0, 1, 0 ) b = ( 0, 0, 1 ) then

ab = ( 0, 1, 0 )( 0, 0, 1 ) = ( 0, 1, w ) where w =  0, so ab = ( 0, 1, 0 ) = a

ba = ( 0, 0, 1 )( 0, 1, 0 ) = ( 0, w, 1 ) where w =  0, so ba = ( 0, 0, 1 ) = b

aa = ( 0, 1, 0 )( 0, 1, 0 ) = ( -1, 1 + w, 0 ) = ( -1, 1 + 1(-1), 0 ) = ( -1, 0, 0 ) = -e

So (aa)b = -eb = -b

whereas a(ab) = aa = -e.

Section 1.7 We check the distributive law.

1.7.1 Does V( Q + S ) = VQ + VS?
We calculate A = ( 0, 1, 0 )( ( 1, 0, 0 ) + ( 0, 0, 1 ) ) and compare it with

                     B = ( 0, 1, 0 )( 1, 0, 0 ) + ( 0, 1, 0 )( 0, 0, 1 )

A = ( 0, 1, 0 )( 1, 0, 1 ) = ( 0, 1, 0 )

B = ( 0, 1, 0 ) + ( 0, 1, 0 ) noting the calculation in section 1.6.

So B = ( 0, 2, 0 )

Since A ( B the distributive law is not obeyed on the left.

1.7.2 What about ( Q + S )V = QV + SV?

We compare ( ( a, b, c ) + ( d, e, f ) )( x, y, z ) with ( a, b, c ) ( x, y, z ) + ( d, e, f )( x, y, z )

The first term is ( a + d, b + e, c + f )( x, y, z ). Substituting in (2a) ie

vqaxby  czbq|ywcq|zwandw = a + s2by + cz )xq
we get

( a + d, b + e, c + f )( x, y, z ) = ( ax + dx – by – ey – cz – fz, bqeqay + dy + ys2by + ey + cz + fz )( x q

cqfqaz dz + zs2by + ey + cz + fz )( x q

Similarly  

( a, b, c )( x, y, z ) + ( d, e, f )( x, y, z ) 

                                              =    axby  czbq|ay + ys2by + cz )xqcq|az + zs2by + cz )xq
                                                 + dxey  fzeq|dy + ys2ey + fz )xqfq|dz + zs2ey + fz )xq
                                              =    axdxby ey cz  fzbq|eq| ay dy + ys2by + cz + ey + fz )xq

cq|fq| az dz + zs2by + cz + ey + fz )xq

ie the two expressions are equal, so multiplication is right distributive over addition. 

Ternion multiplication has been defined in an asymmetrical manner, which leads to the partial compliance with the distributive law. In particular, the components of the multiplicand are all linear in the formula, whereas the multiplier generates quadratic elements. Hence the formula is additive in terms of the multiplicand but not in terms of the multiplier.

NB Because the ternions are not distributive we cannot follow the analogy with the quaternions and use 

1 = ( 1, 0, 0 ), i = ( 0, 1, 0 ) and j = ( 0, 0, 1 ) as basis elements. Although i2 = j2 = -1 as for the quaternions, it is incorrect to use

( a + bi + cj )( x + yi + zj ) = ( ax + ayi + azj ) + ( bxi - by + bzi ) + ( cxj + cyj - cz )

                                        = ax - by - cz + ( ay + bx + bz )i + ( az + cx + cy)j

as the equation for ternion multiplication. 

Section 1.8 We show that the ternion norm is multiplicative, ie that |vq| = |v||q| = |qv|.

Since the norm is multiplicative for quaternions we know that 

|vq| = |q||rv0r-1| = |q||r||v0||r-1| 

      = |q|sqrt( cos2s2z2sin2 s2y2sin2sqrt( a2 + b2 + c2 ) sqrt( cos2s2z2sin2 s2y2sin2
      = |q|sqrt( cos2s2sin2z2 y2 |v|( cos2s2sin2z2 y2 
      = |q|sqrt( cos2sin2|v|sqrt( cos2sin2

      = |q||v| as required. 

By symmetry it follows that |qv| =|q||v|.

If y = z = 0 then q acts as a scalar, so there is no problem.

Since the norm is multiplicative for ternions we know that there are no zero divisors. If there were a pair of zero divisors, ie q and v, such that qv = 0, with both q and v non-zero, then |qv| = |q||v| = 0, a contradiction, as only the zero vector has zero norm.

Section 1.9 We prove that ternion multiplication is compatible with scalar multiplication, ie that k(vq) = (kv)q = v(kq,) where k is any real number.

k(vq) = k|q|rv0r-1 = |q|r(kv0)r-1 since quaternion multiplication is compatible with scalars

         = (kv)q

We substitute ( kx, ky, kz ) into (1) giving

v(kq) = sqrt( k2x2 + k2y2 + k2z2 )( cos-skzsin, skysin)v0( cosskzsin, -skysin )

where= arccos( kx/k|q| )/2 = arccos( x/sqrt( x2 + y2 + z2 ) )/2 

and s = 1/(ksqrt( y2 + z2 )), so skz = z/sqrt( y2 + z2 ) and sky = y/sqrt( y2 + z2 ), giving

v(kq) = ksqrt( x2 + y2 + z2 )( cosz/sqrt( y2 + z2 ), y/sqrt( y2 + z2 )v0( cosz/sqrt( y2 + z2 ), y/sqrt( y2 + z2 )

         = k(vq)

If y = z = 0 then q acts as a scalar, so there is no problem.

Section 1.10 What about the hairy ball theorem and singularities?

Although multiplication is defined for all values of both vectors, it is not continuous. The hairy ball theorem seems to say that if multiplication is seen as a vector-valued function f(), of the two vectors being multiplied, then f() is not continuous at some point. Indeed, f() is not continuous at the x-axis, ie the x-axis is a singularity. This is mentioned in NB2 below equation (1). The singularity arises because the cross product has a singularity when its terms approach collinearity. In our case, this is when the right vector approaches the x-axis.

Note that there is no singularity in ternion multiplication when the two vectors being multiplied approach collinearity.

Section 1.11 Do the ternions form a field?

The short answer is no, as the numerical example indicates that multiplication is not commutative. As for the other field axioms, the natural addition of vectors ensures that the five axioms for addition are satisfied. Multiplication satisfies the closure, identity and inverse axioms, but is not associative. Ternion arithmetic fails only commutativity, associativity and the distributive law on the left. 

Section 1.12 How does ternion multiplication compare with the vector cross product? 

According to wikipedia, R3 with the cross product form an algebra over a field, which is neither commutative nor associative, but is a Lie algebra. Although the cross product is distributive and compatible with scalar multiplication, it has zero divisors, eg a x a = 0. Section 1.8 shows that the ternions do not have zero divisors.

Section 2.1 What are the graphical applications?
This paper was inspired by the pioneering work of White and Nylander and has the same motivation, ie to create a mathematics that allows us to render three-dimensional fractals.

The behaviour of the exponential formula given in Section 1.2 can be illustrated graphically by generating a three-dimensional analogue of the Mandelbrot Set using ray tracing. Although the result is a two-dimensional image on a computer screen, it is like a photo of a sculpture, whereas a conventional fractal is like a photo of a painting.

Formula (4a) is symmetrical in the y and z terms, since these are multiplied by the same factor when the exponential is taken. This echoes the behaviour of the quaternions, where all three imaginary terms are multiplied by the same factor in exponentiation. From the point of view of generating graphics this is probably undesirable, and it may explain why quaternion fractals have the whipped cream look. Unfortunately, this is also true of the ternions. We may need to introduce an asymmetry to generate interesting graphics. In other words, we want to make the y and z terms not move in tandem.

Complex numbers do not suffer from this problem because there is only one imaginary term.

As mentioned in 1.4.2, quaternions can be used instead of ternions for polynomial formulas. However, ternions are needed for more complicated formulas, such as quotients of polynomials or trigonometric formulas. One needs to define functions such as sin and log for ternions using a series expansion.

Discussion

Vector rotation is not the only way to implement the analogy with complex multiplication for triplex numbers. Nor are quaternions necessary, as matrices can do the same job. There are myriad alternative ways to define triplex multiplication, for instance in terms of manipulating a modulus and two angles. The best known of these is the method developed by White and Nylander.

The system described in this paper does not belong to that class of triplex arithmetics, since here angles are not added. Instead, vectors are rotated.

The hope is that by using the quaternions, ie the best-behaved number system that is capable of handling three dimensions, we have found the optimum method for multiplying co-ordinates in three-space. However, the ternion system is not as well-behaved as the quaternions themselves. The multiplication is fairly well-behaved because it performs rotations in three-space, and allows well-behaved division without nasty features like zero divisors. Appendix 2 proves that q(n+p)/qn = qp for all ternions q, and all real numbers n, p.

The chief failings of the ternions are that they are not associative and do not obey the distributive law on the left. 

The problem with constructing a triplex arithmetic is that whereas we are free to choose one group for the multiplication and another for the addition, linking the two together is problematic, hence the failure of the distributive law. If I may be forgiven the poetic licence, the distributive law is like a corpus callosum, connecting the left brain of multiplication with the right brain of addition. Fractal complexity is created by the interaction of addition with multiplication.

This paper attempts to construct a well-behaved system for triplex arithmetic based on rotations. If instead the goal is to create the best possible three-dimensional equivalent of the Mandelbrot Set, then a more focused way to do this would be to make the mechanics of calculating xpn+1 = xpn + c as smooth as possible, rather than worrying about creating a system with an identity and inverses. In particular, it is desirable to fully obey the distributive law.

The images produced using the White-Nylander system fall short of what we see in two-dimensional fractals, in that detail tends to be smeared out, and the quadratic equation produces an unfractal image. So people have sought the "real" mandelbulb, aka the Beezlebulb. This is very likely a mirage, because of the Frobenius Theorem.

These mathematical musings are moot from the graphical point of view. The real test of the maths is what 3D fractals it generates. Unfortunately, neither the quaternions nor the ternions produce fractal images. As discussed in Section 2.1, to generate interesting graphics we may need to throw away mathematical correctness by introducing asymmetry into the exponential formula. There are many ways to do this.

A speculative thought by way of a coda

There is reason to believe that nature encodes the complex structures of animals, such as the lungs, circulatory system, lymphatic system and nervous system in the DNA as relatively simple patterns or templates. If so, these patterns may well be fractal
. This is because one of the characteristics of fractals is that a very simple formula can generate an amazingly intricate pattern, of which the Mandelbrot Set is the canonical example. If it is true that the complex patterns encoded in DNA are fractal in nature, then it seems reasonable to assume that these fractals are three-dimensional, rather than two-dimensional, as we do not live in a flat world. Thus it is possible that the maths developed in this paper could be used in describing morphogenesis.

Appendix 1

We simplify equation (1) for the product of two vectors, v = ( a, b, c ) and q = ( x, y, z ).

vq = |q|( cosszsin, sysin)( 0, a, b, c )( cosszsin, sysin )

    = |q|( bszsincsysin, acoscszsinbsysin, bcosasysin, ccosaszsin )

          ( cosszsin, sysin )
    = |q|( cosbszsincsysinszsinbcosasysinsysinccosaszsin

cosacoscszsinbsysinszsinccosaszsin sysinbcosasysin

cosbcosasysinszsinbszsincsysinsysinacoscszsinbsysin

cosccosaszsinszsinacoscszsinbsysin sysinbszsincsysin

    = |q|( bszsincoscsysincosszsinbcos asyszsinsinscysincossyaszsinsin

cosacoscszsinbsysinszsinccosaszsin sysinbcosasysin

cosbcosasysinszsinbszsincsysinsysinacoscszsinbsysin

cosccosaszsinszsinacoscszsinbsysin sysinbszsincsysin

q|

acos2cszsincosbsysincossczsincosas2z2sin2 sybsincosas2y2sin2

bcos2asysincoss2z2bsin2cs2yzsin2syasincoss2yzcsin2s2y2bsin2

ccos2aszsincosszasincoscs2z2sin2bs2yzsin2 s2yzbsin2 s2cy2sin2

removing the redundant real term of the quaternion, we obtain the triplex
q|acos2cszsincosbsysincosas2z2sin2as2y2sin2

bcos2asysincoss2z2bsin2cs2yzsin2s2yzcsin2s2y2bsin2

ccos2aszsincoscs2z2sin2bs2yzsin2 s2yzbsin2 s2cy2sin2

q|acos2ssincoscz +by )as2sin2z2y2

bcos2asysincoss2sin2z2bcyzy2b )

ccos2aszsincoss2sin2cz2byz byz  cy2

using s = 1/sqrt( y2 + z2 

q|acos2ssincos by + cz )asin2

bcos2asysincoss2sin2z2bcyzy2b )

ccos2aszsincoss2sin2cz2byz  cy2

We simplify this using the two identities:

cos2sin2cos2

sincossin2

found on https://en.wikipedia.org/wiki/Trig_identities under “Double-angle, triple-angle, and half-angle formulae”
q|acos2ssin2by + cz )

bcos2asysin2s2sin2z2b y2bcyzy2b )

ccos2aszsin2s2sin2cz2byz  cz2 + cy2

q|acos2ssin2by + cz )

bcos2asysin2s2bsin2z2y2 ) s2sin2cyzy2b ),
ccos2aszsin2s2sin2cz2byz )  cs2sin2z2 + y2

using s2 = 1/ y2 + z2 ) and cos2sin2
q|acos2ssin2by + cz )basysin2s2sin2cyzy2b )caszsin2s2sin2cz2byz )

using cos2xqand ssin2q
q|axqby + cz )/qbayqs2sin2cyzy2b )cazqs2sin2cz2byz )

axby  czbq|ayq|ys2sin2by + cz )cq|azq|zs2sin2by + cz )

Note that xqcos2cos2sin2cos2sin2sin2sin2

so xqqsin2ie qsin2x  qWe simplify using this identity:
vqaxby  czaybq|ys2by + cz )xqazcq|zs2by + cz )xq

Note that the formula above can be given in a number of slightly different but equivalent forms, depending on what substitutions are made when simplifying the quaternion product. This version has been chosen for symmetry.

Appendix 2: validation of ternion division

The general idea is to show that ternion division is well behaved. Specifically, we want to prove that q(n+p)/qn = qp for all ternions q, and all real numbers n, p.

Using the exponential formula (4a) we get

qn+p /qn = |q|n+p( cos(, yssin(, zssin( )/ ( |q|n( cos, yssin, zssin ))

where |q| = sqrt( x2 + y2 + z2  )

           ( = ( n+p )arccos( x/|q| )

           = narccos( x/|q| )

           s = 1/sqrt( y2 + z2 ) (provided y or z is non-zero)

If y = z = 0 then q( = ( x(, 0, 0 ).

So

qn+p /qn = |q|p( cos(, yssin(, zssin( )/( cos, yssin, zssin )

We use the reciprocal formula, ie  q-1 = |q|-2( x, -y, -z ) to get
qn+p /qn = |q|p( cos(, yssin(, zssin( )q1-2( cos, -yssin, -zssin )

where q1 = sqrt( cos2 y2s2sin2 + z2s2sin2 )

                = sqrt( cos2 s2sin2 ( y2 + z2 ))


    = 1

so

qn+p /qn = |q|p( cos(, yssin(, zssin( )( cos, -yssin, -zssin )

The formula for multiplication of v = ( a, b, c) by q = ( x, y, z ) is

vqaxby  czbq|ywcq|zw
where  w = a + s2by + cz )xq

           |q| = sqrt( x2 + y2 + z2 )

           s = 1/sqrt( y2 + z2 ) (provided y or z is non-zero)

hence 

qn+p /qn = |q|p( cos(cosyssin(yssinzssin(zssin 

                       yssin(q2 – wyssin

zssin(q2 – wzssin
where q2 = cos2 + y2s2sin2 + z2s2sin2as for q1.

qn+p /qn = |q|p( cos(coss2sin(sin(y2z2)yssin( - wyssinzssin( – wzssin
            = |q|p( cos(cossin(sin yssin( - wyssinzssin( – wzssin

and w = cos( + yssin(yssinzssin(zssincos - q3 )/( y2s2sin2z2s2sin2
where q3 = sqrt( cos2y2s2sin2z2s2sinyet again.

So
w = cos( - y2s2sin(sinz2s2sin(sincos - 1 )/( s2sin2y2z2
    = cos( - s2sin(sin y2z2cos - 1 )/( s2sin2y2z2
    = cos( - sin(sincos - 1 )/( sin2
    = ( cos(sin - sin(cos - 1 ))/sin

qn+p /qn = |q|p( cos(cossin(sin 

                       yssin( – yssin( cos(sin - sin(cos - 1 ))/sin
zssin( – zssin( cos(sin - sin(cos - 1 ))/sin

            = |q|p( cos(cossin(sin 

                       yssin( – ys( cos(sin - sin(cos - 1 )),

zssin( – zs( cos(sin - sin(cos - 1 ))

            = |q|p( cos(cossin(sin 

                       ys( sin( – ( cos(sin - sin(cos - 1 )),

zs( sin( – ( cos(sin - sin(cos - 1 ))

            = |q|p( cos(cossin(sin 

                       ys( sin( – cos(sin + sin(cos  sin( ),

                       zs( sin( – cos(sin + sin(cos  sin( ))

            = |q|p( cos(cossin(sin 

                       ys( – cos(sin + sin(cos ),

                       zs( – cos(sin + sin(cos ))

We use the identities cos(a – b) = cosacosb + sinasinb 

and sin( a – b) = sinacosb - cosasinb

to get that

qn+p /qn = |q|p( cos(( - yssin( ( - zssin( ( - 

since ( = ( n+p )arccos( x/|q| ) and = narccos( x/|q| )

(( - parccos( x/|q| )
Therefore qn+p /qn =qp

as qp = |q|p( cosψ, yssinψ, zssinψ )

where ψ = parccos( x/|q| ).

� Benoit Mandelbrot suspected that brain cells, specifically the Purkinje cells of the cerebellum, could be fractal-like. In 1989 Pellionisz, published the first brain cell that was developed based entirely upon a fractal algorithm. The impetus is not only in the obviously self-similar character of these neurons, but also because (having constructed a computer model of 2 million brain cells) Pellionisz had first-hand knowledge of the fact that there is simply not enough information in the genome to specify each and every branchlet of the 10 to the power of 11 Purkinje cells in the cerebellum. Thus, some kind of compression algorithm must be used by nature. The 1989 paper was a demonstration that fractal sets could provide the clues for morphogenesis.








